Перевод: с немецкого на русский

с русского на немецкий

surface flow

  • 1 Wassererosion

    1. водная эрозия

     

    водная эрозия

    [ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    EN

    water erosion
    The breakdown of solid rock into smaller particles and its removal by water. As weathering, erosion is a natural geological process, but more rapid soil erosion results from poor land-use practices, leading to the loss of fertile topsoil and to the silting of dams, lakes, rivers and harbours. There are three classes of erosion by water. a) Splash erosion occurs when raindrops strike bare soil, causing it to splash, as mud, to flow into spaces in the soil and to turn the upper layer of soil into a structureless, compacted mass that dries with a hard, largely impermeable crust. b) Surface flow occurs when soil is removed with surface run-off during heavy rain. c) Channelized flow occurs when a flowing mixture of water and soil cuts a channel, which is then deepened by further scouring. A minor erosion channel is called a rill, a larger channel a gully. (Source: ALL)
    [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    Тематики

    EN

    DE

    FR

    Немецко-русский словарь нормативно-технической терминологии > Wassererosion

  • 2 Oberflächennabfluss

    1. поверхностный сток

     

    поверхностный сток
    Сток, происходящий по земной поверхности.
    [ ГОСТ 19179-73]

    Тематики

    Обобщающие термины

    EN

    DE

    FR

    Немецко-русский словарь нормативно-технической терминологии > Oberflächennabfluss

  • 3 Wasserfluß

    1. расчет гидрологического потока

     

    расчет гидрологического потока

    [ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    EN

    hydrologic flow
    The characteristic behaviour and the total quantity of water involved in a drainage basin, determined by measuring such quantities as rainfall, surface and subsurface storage and flow, and evapotranspiration. (Source: BJGEO)
    [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    Тематики

    EN

    DE

    FR

    Немецко-русский словарь нормативно-технической терминологии > Wasserfluß

  • 4 Dauerstrombelastbarkeit, f

    1. длительный допустимый ток

     

    (длительный) допустимый ток
    Максимальное значение электрического тока, который может протекать длительно по проводнику, устройству или аппарату при определенных условиях без превышения определенного значения их температуры в установившемся режиме
    [ ГОСТ Р МЭК 60050-826-2009]

    Этот ток обозначают IZ
    [ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]

    EN

    (continuous) current-carrying capacity
    ampacity (US)
    maximum value of electric current which can be carried continuously by a conductor, a device or an apparatus, under specified conditions without its steady-state temperature exceeding a specified value
    [IEV number 826-11-13]

    ampacity
    The current in amperes that a conductor can carry continuously under the conditions of use without exceeding its temperature rating.
    [National Electrical Cod]

    FR

    courant (permanent) admissible, m
    valeur maximale du courant électrique qui peut parcourir en permanence, un conducteur, un dispositif ou un appareil, sans que sa température de régime permanent, dans des conditions données, soit supérieure à la valeur spécifiée
    [IEV number 826-11-13]

    Ampacity, the term is defined as the maximum amount of current a cable can carry before sustaining immediate or progressive deterioration. Also described as current rating or current-carrying capacity, is the RMS electric current which a device can continuously carry while remaining within its temperature rating. The ampacity of a cable depends on:

    • its insulation temperature rating;
    • conductor electrical properties for current;
    • frequency, in the case of alternating currents;
    • ability to dissipate heat, which depends on cable geometry and its surroundings;
    • ambient temperature.

    Electric wires have some resistance, and electric current flowing through them causes voltage drop and power dissipation, which heats the cable. Copper or aluminum can conduct a large amount of current before melting, but long before the conductors melt, their insulation would be damaged by the heat.

    The ampacity for a power cable is thus based on physical and electrical properties of the material & construction of the conductor and of its insulation, ambient temperature, and environmental conditions adjacent to the cable. Having a large overall surface area may dissipate heat well if the environment can absorb the heat.

    In a long run of cable, different conditions govern, and installation regulations normally specify that the most severe condition along the run governs the cable's rating. Cables run in wet or oily locations may carry a lower temperature rating than in a dry installation. Derating is necessary for multiple circuits in close proximity. When multiple cables are near, each contributes heat to the others and diminishes the amount of cooling air that can flow past the individual cables. The overall ampacity of the insulated conductors in a bundle of more than 3 must be derated, whether in a raceway or cable. Usually the de-rating factor is tabulated in a nation's wiring regulations.

    Depending on the type of insulating material, common maximum allowable temperatures at the surface of the conductor are 60, 75 and 90 degrees Celsius, often with an ambient air temperature of 30°C. In the U.S., 105°C is allowed with ambient of 40°C, for larger power cables, especially those operating at more than 2 kV. Likewise, specific insulations are rated 150, 200 or 250°C.

    The allowed current in cables generally needs to be decreased (derated) when the cable is covered with fireproofing material.

    For example, the United States National Electric Code, Table 310-16, specifies that up to three 8 AWG copper wires having a common insulating material (THWN) in a raceway, cable, or direct burial has an ampacity of 50 A when the ambient air is 30°C, the conductor surface temperature allowed to be 75°C. A single insulated conductor in air has 70 A rating.

    Ampacity rating is normally for continuous current, and short periods of overcurrent occur without harm in most cabling systems. The acceptable magnitude and duration of overcurrent is a more complex topic than ampacity.

    When designing an electrical system, one will normally need to know the current rating for the following:

    Some devices are limited by power rating, and when this power rating occurs below their current limit, it is not necessary to know the current limit to design a system. A common example of this is lightbulb holders.

    [http://en.wikipedia.org/wiki/Ampacity]

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

    DE

    • Dauerstrombelastbarkeit, f
    • Strombelastbarkeit, f

    FR

    • courant admissible, m
    • courant permanent admissible, m

    Немецко-русский словарь нормативно-технической терминологии > Dauerstrombelastbarkeit, f

  • 5 Strombelastbarkeit, f

    1. длительный допустимый ток

     

    (длительный) допустимый ток
    Максимальное значение электрического тока, который может протекать длительно по проводнику, устройству или аппарату при определенных условиях без превышения определенного значения их температуры в установившемся режиме
    [ ГОСТ Р МЭК 60050-826-2009]

    Этот ток обозначают IZ
    [ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]

    EN

    (continuous) current-carrying capacity
    ampacity (US)
    maximum value of electric current which can be carried continuously by a conductor, a device or an apparatus, under specified conditions without its steady-state temperature exceeding a specified value
    [IEV number 826-11-13]

    ampacity
    The current in amperes that a conductor can carry continuously under the conditions of use without exceeding its temperature rating.
    [National Electrical Cod]

    FR

    courant (permanent) admissible, m
    valeur maximale du courant électrique qui peut parcourir en permanence, un conducteur, un dispositif ou un appareil, sans que sa température de régime permanent, dans des conditions données, soit supérieure à la valeur spécifiée
    [IEV number 826-11-13]

    Ampacity, the term is defined as the maximum amount of current a cable can carry before sustaining immediate or progressive deterioration. Also described as current rating or current-carrying capacity, is the RMS electric current which a device can continuously carry while remaining within its temperature rating. The ampacity of a cable depends on:

    • its insulation temperature rating;
    • conductor electrical properties for current;
    • frequency, in the case of alternating currents;
    • ability to dissipate heat, which depends on cable geometry and its surroundings;
    • ambient temperature.

    Electric wires have some resistance, and electric current flowing through them causes voltage drop and power dissipation, which heats the cable. Copper or aluminum can conduct a large amount of current before melting, but long before the conductors melt, their insulation would be damaged by the heat.

    The ampacity for a power cable is thus based on physical and electrical properties of the material & construction of the conductor and of its insulation, ambient temperature, and environmental conditions adjacent to the cable. Having a large overall surface area may dissipate heat well if the environment can absorb the heat.

    In a long run of cable, different conditions govern, and installation regulations normally specify that the most severe condition along the run governs the cable's rating. Cables run in wet or oily locations may carry a lower temperature rating than in a dry installation. Derating is necessary for multiple circuits in close proximity. When multiple cables are near, each contributes heat to the others and diminishes the amount of cooling air that can flow past the individual cables. The overall ampacity of the insulated conductors in a bundle of more than 3 must be derated, whether in a raceway or cable. Usually the de-rating factor is tabulated in a nation's wiring regulations.

    Depending on the type of insulating material, common maximum allowable temperatures at the surface of the conductor are 60, 75 and 90 degrees Celsius, often with an ambient air temperature of 30°C. In the U.S., 105°C is allowed with ambient of 40°C, for larger power cables, especially those operating at more than 2 kV. Likewise, specific insulations are rated 150, 200 or 250°C.

    The allowed current in cables generally needs to be decreased (derated) when the cable is covered with fireproofing material.

    For example, the United States National Electric Code, Table 310-16, specifies that up to three 8 AWG copper wires having a common insulating material (THWN) in a raceway, cable, or direct burial has an ampacity of 50 A when the ambient air is 30°C, the conductor surface temperature allowed to be 75°C. A single insulated conductor in air has 70 A rating.

    Ampacity rating is normally for continuous current, and short periods of overcurrent occur without harm in most cabling systems. The acceptable magnitude and duration of overcurrent is a more complex topic than ampacity.

    When designing an electrical system, one will normally need to know the current rating for the following:

    Some devices are limited by power rating, and when this power rating occurs below their current limit, it is not necessary to know the current limit to design a system. A common example of this is lightbulb holders.

    [http://en.wikipedia.org/wiki/Ampacity]

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

    DE

    • Dauerstrombelastbarkeit, f
    • Strombelastbarkeit, f

    FR

    • courant admissible, m
    • courant permanent admissible, m

    Немецко-русский словарь нормативно-технической терминологии > Strombelastbarkeit, f

  • 6 Quellwasser

    1. вода из родника

     

    вода из родника

    [ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    EN

    spring water
    Water obtained from an underground formation from which water flows naturally to the surface, or would flow naturally to the surface if it were not collected underground. (Source: WQA)
    [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    Тематики

    EN

    DE

    FR

    Немецко-русский словарь нормативно-технической терминологии > Quellwasser

  • 7 Meereskreislauf

    1. циркуляция морской воды

     

    циркуляция морской воды

    [ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    EN

    sea circulation
    Large-scale horizontal water motion within an ocean. The way energy from the sun, stored in the sea, is transported around the world. The currents explain, for example, why the UK has ice-free ports in winter, while St. Petersburg, at the same latitude as the Shetland Islands, needs ice breakers. Evidence is growing that the world's ocean circulation was very different during the last ice age and has changed several times in the distant past, with dramatic effects on climate. The oceans are vital as storehouses, as they absorb more than half the sun's heat reaching the earth. This heat, which is primarily absorbed near the equator is carried around the world and released elsewhere, creating currents which last up to 1.000 years. As the Earth rotates and the wind acts upon the surface, currents carry warm tropical water to the cooler parts of the world. The strength and direction of the currents are affected by landmasses, bottlenecks through narrow straits, and even the shape of the sea-bed. When the warm water reaches polar regions its heat evaporates into the atmosphere, reducing its temperature and increasing its density. When sea-water freezes it leaves salt behind in the unfrozen water and this cold water sinks into the ocean and begins to flow back to the tropics. Eventually it is heated and begins the cycle all over again. (Source: MGH / WRIGHT)
    [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    Тематики

    EN

    DE

    FR

    Немецко-русский словарь нормативно-технической терминологии > Meereskreislauf

См. также в других словарях:

  • free-surface flow — beslėgė vandens tėkmė statusas Aprobuotas sritis melioracija apibrėžtis Vandens tėkmė vandentakiu esant laisvajam paviršiui. atitikmenys: angl. free surface flow rus. безнапорный водный поток šaltinis Lietuvos Respublikos žemės ūkio ministro… …   Lithuanian dictionary (lietuvių žodynas)

  • Flow visualization — In fluid dynamics it is critically important to see the patterns produced by flowing fluids, in order to understand them. We can appreciate this on several levels: Most fluids (air, water, etc.) are transparent, thus their flow patterns are… …   Wikipedia

  • Surface-water hydrology — is a field that encompasses all surface waters of the globe (overland flows, rivers, lakes, wetlands, estuaries, oceans, etc). This a subset of the hydrologic cycle that does not include atmospheric, and ground waters. Surface water hydrology… …   Wikipedia

  • Flow measurement — is the quantification of bulk fluid movement. Flow can be measured in a variety of ways. Positive displacement flow meters acumulate a fixed volume of fluid and then count the number of times the volume is filled to measure flow. Other flow… …   Wikipedia

  • Surface weather observation — Surface weather observations are the fundamental data used for safety as well as climatological reasons to forecast weather and issue warnings worldwide. [Office of the Federal Coordinator of Meteorology. [http://www.ofcm.gov/fmh 1/pdf/B CH2.pdf… …   Wikipedia

  • Flow — may refer to:In science and technology: *Dataflow, computing term related to the flow of messages between software components *Environmental flow, the amount of water necessary in a watercourse to maintain a healthy ecosystem *Flow (computer… …   Wikipedia

  • Flow-accelerated corrosion — (FAC), also known as flow assisted corrosion, is a corrosion mechanism in which a normally protective oxide layer on a metal surface dissolves in a fast flowing water. The underlying metal corrodes to re create the oxide, and thus the metal loss… …   Wikipedia

  • Flow banding — is a geological term to describe bands or layers that can sometimes be seen in rock that formed from the substance molten rock or magma. Flow banding is caused by friction of the viscous magma which is in contact with a solid rock interface,… …   Wikipedia

  • Surface piercing — Surface piercings are any body piercings that take place on the surface of the body through areas which are not particularly concave or convex, where the piercing canal transverses a surface flap of skin, rather than running completely through a… …   Wikipedia

  • Surface runoff — Runoff flowing into a stormwater drain Surface runoff is the water flow that occurs when soil is infiltrated to full capacity and excess water from rain, meltwater, or other sources flows over the land. This is a major component of the water… …   Wikipedia

  • Flow cytometry — Analysis of a marine sample of photosynthetic picoplankton by flow cytometry showing three different populations (Prochlorococcus, Synechococcus, and picoeukaryotes) Flow cytometry (abbreviated: FCM) is a technique for counting and examining… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»